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Abstract— High-frequency loss in transformer windings using
stranded wire is analyzed. A complete loss prediction method
is presented. The interstrand resistivity, which is an important
parameter to determine the power loss, is measured experimen-
tally. The analytical model is solved to get an optimal pitch,
which specifies the degree of twisting that results in minimum
loss. A transformer using a stranded wire winding is built and
measured. The model prediction is verified to have high accuracy
in the frequency range up to 100 kHz. Compared with the same
transformer using a solid wire winding, about 67 percent less
power loss at 100 kHz is achieved using stranded wire. Using
the loss-prediction model provided in this paper, engineers will be
able to control eddy-current losses in high-frequency transformer
and inductor windings using stranded wire at a relatively low cost
compared to using litz wire.

I. I NTRODUCTION

Special winding construction, using litz wire or foil, is
often necessary to control eddy-current losses in high-frequency
transformer and inductor windings. The high cost of these
techniques is a major limitation in developing high-power-
density, high-efficiency components for power electronics. A
much lower-cost alternative is simple stranded copper wire
with uninsulated, bare strands. In addition to the wire cost
advantage arising from avoiding the insulation process, there
is a component-manufacturing cost advantage arising from the
easier termination of bare strands. The loss with uninsulated
strands will certainly be higher than in true litz wire with indi-
vidually insulated strands. However, the high-frequency loss can
be substantially lower than in solid wire—the separation into
strands impedes eddy currents, even if it does not completely
stop them. Anecdotal evidence has supported the idea that this
can work well in some applications. However, until now, there
has not been a model available to predict the eddy-current losses
in stranded wire with uninsulated strands, which we will refer to
simply asstranded wirefor the remainder of this paper. Thus,
it has not been possible for a designer to evaluate this low-
cost alternative and determine whether it is a good choice for
a particular application, and it is almost never used.

In this paper, we develop a model to predict losses in
stranded wire, by combining standard analysis of loss in litz
wire [1], [2], [3], [4] with new analysis of the currents that
circulate between uninsulated strands. An important parameter
in this model, the resistance between strands, needed to be
determined experimentally; these measurements are described
in Section III. The model has been verified experimentally as
described in Section V. The discrepancy between the prediction
and the measurement at very high frequency was explained in
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Section V-A. The experiments also confirm performance much
better than that of solid wire.

With a verified model for the losses in stranded wire, it is
possible to quantitatively evaluate its performance in a particular
application. In some cases, its performance can be very similar
to that of true litz wire, whereas in other situations, its losses are
substantially higher. Thus, our model provides an important tool
to designers, allowing them to take advantage of the cost savings
of uninsulated strands where they work well, while avoiding
them where they do not.

Because we provide an analytical model of loss, it is possible
to use it in analytical design optimization. In Section IV, we
present the optimization of one important parameter: the degree
of twisting in a bundle, as quantified by pitch, the distance for
one full twist. Tight twisting (shorter pitch) results in smaller
loops linking ac flux, and thus lower circulating currents and ac
loss. However, short pitch also results in longer length of each
strand, due to the twisted path it must follow, and this leads to
an increase in other types of eddy-current loss and to larger dc
resistance. Our optimization provides the pitch giving minimum
total loss in stranded wire.

II. L OSSCALCULATION

Skin effect and proximity effect are the two effects that
make the current density distributions non-uniform at high
frequency, and thus increase the power loss. Skin effect is the
tendency for high-frequency currents to flow on the surface
of a conductor. Proximity effect is the tendency for current
to flow in other undesirable patterns—loops or concentrated
distributions—due to the presence of magnetic fields generated
by nearby conductors. Ordinarily, proximity effects dominate
skin effects in a transformer or inductor because in a multi-
layer winding the total magnetic field is much larger than the
field generated only by one strand or turn.

In multi-strand windings, skin and proximity effects may
be further divided into strand-level and bundle-level effects,
as illustrated in Fig. 1. Bundle-level effects relate to current
circulating in paths involving multiple strands, whereas strand-
level effects take place within individual strands. Strand-level
proximity effect may optionally be still further divided into
internal proximity effect (the effect of other currents within the
bundle) and external proximity effect, but we instead consider
the total proximity effect as a result of the total field at any
given strand.

Strand-level effects are not significantly affected by the
presence or absence of insulation except as discussed in Sec-
tion V-A. Thus, standard litz-wire analysis [1], [2], [3], [4]
can be applied to uninsulated strands. Predicting bundle-level
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Fig. 1. Types of eddy-current effects in bundled wire.

proximity effect with finite conductivity between strands is more
complex. The potential between any pair of strands induced by
changing magnetic field is calculated, and then the current and
loss are determined based upon the measured resistance between
strands.

Because we find that the bundle-level proximity effect losses
are reduced by using smaller pitch, it is important to include the
effect of pitch on dc resistance and on strand-level proximity
effect in our analysis. The calculations of each type of loss,
including pitch effects, are outlined below.

A. DC resistance

The distance a strand travels is longer when it is twisted than
when it goes straight. The effect of twisting on the length of
strand is illustrated in Fig. 2, which shows a single cylindrical
shell of length equal to the pitch, unwound to show flat on the
page. With simple twisting, each strand will stay within one
such shell at a radiusr, and thus will be longer than the overall
bundle by a factor of

`d

p
=

1
cos(θ)

=

√
p2 + (2πr)2

p
(1)

wherep is the pitch,θ is the angle as shown in Fig. 2, and`d

is the actual length of the strand—the diagonal in Fig. 2.
This length increase directly corresponds to the increased

dc resistance of a given strand. The overall dc resistance of
a twisted bundle is the parallel combination of the resistances

d p

2 r 

Fig. 2. The effect of twisting on the length of strand. See text.

of many such strands, each at a different radius. Because of the
different resistance of stands at different radii, the dc current will
not be exactly equal for each strand. However, the expression
for total resistance is greatly simplified by assuming that the
dc current flowing in each strand is the same. By performing
both the simplified and exact calculations, we found that the
approximation of equal dc strand currents is good to better than
2% when the pitch is more than six times the diameter of the
bundle. Thus, we chose to use that simplified calculation for
further analysis. Because the strand length depends on radius,
the overall diameter or radius of the bundle must be known in
order to calculate the dc resistance. The overall bundle diameter
db depends on the strand packing factor, which we define as

Ka =
Ae

Ab
(2)

where Ab is the overall bundle area (πd2
b/4) and Ae is the

sum of the cross sectional areas of all the strands, with each
strand area taken perpendicular to the bundle, not perpendicular
to the strand. Thus, the area of each strand is taken at a
different angle,θ, to the strand axis, resulting in a elliptical
area, as shown in Fig. 3. We assume that packing factorKa is
constant independent of the pitch. However, the bundle diameter
increases with smaller pitch, as can be seen in this expression,
derived in Appendix I,

db =

√
nd2

s

Ka
(1 +

π2nd2
s

4Kap2
) (3)

wheren is the number of strands andds is the diameter of each
strand. Using (3), Appendix I derives the dc resistance, based
on equal currents in each strand:

Rdc =
4ρc`

πnd2
s

(1 +
π2nd2

s

4Kap2
) (4)

where` is the length of the bundle andρc is the resistivity of
copper. The factor4ρc`

πnd2
s

represents resistance without twisting,
and the expression in the parentheses represents the effect of
pitch.

As,e

As,c

bundle axis 

strand axis

Fig. 3. In the cross section of the bundle the strand cross section becomes
elliptical.
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Fig. 4. Integration loop used to find voltage that induces current flow along
the marked path.

B. Strand-level eddy-current loss

For a single strand of length̀s placed in a sinusoidally
varying magnetic field, the proximity-effect power loss can be
modelled as [1], [3], [4], [5]

Ppe =
πω2B̂2d4

s`s

128ρc
(5)

whereω is the radian frequency and̂B is the peak flux density,
assumed to be constant throughout the strand. This assumption
is equivalent to assuming the strand to be small compared to
a skin depth at the frequency of interest [6]. In good designs,
this will in fact be the case.

For the case of a transformer winding,B̂ varies with position.
Thus in order to calculate the power loss for the whole winding,
we use the spatial average of̂B2, which we write asB̂2.
The strand-level eddy-current loss for the whole transformer
winding, taking into account of the effect of pitch as in the
calculation of dc resistance, can be written as

Peddy, strand=
πω2B̂2d4

sn`

128ρc
(1 +

π2nd2
s

4Kap2
) (6)

In typical transformer designs, a standard one-dimensional
model of the field is sufficient to obtain the average value of
B̂2 [7],

B̂2 =
1
3
·
(

µ0NÎ

bw

)2

(7)

wherebw is the width of the winding window,N is the number
of turns andÎ is the peak current.

C. Bundle-level eddy-current loss

In a twisted bundle with significant resistance between
strands, the potential between a pair of strands can be calculated
as the derivative of the integral of the flux linked by the path
shown in Fig. 4. The area of the loop in Fig. 4 varies with the
distancea between the positions where potential is evaluated.
We assume that the flux is uniform throughout the bundle; that
the eddy currents are not large enough to significantly reduce
the flux. In Section V-A, we discuss the situation where eddy
current is large enough to reduce the flux.

In a given cross section through the bundle, different strands
are at different points in the twist cycle, corresponding to
different values ofa. Thus, if we describe the bundle cross
section in polar coordinates(r, φ), the potential difference

between a strand and the strand in the corresponding position on
the opposite side of the bundle depends onφ (which determines
a), and on the radiusr. Taking the center of the bundle as
zero potential, we derive in Appendix II an expression for the
potential at any point in a given cross section.

V (r, φ) =
rp

2π
sin(φ)ωB̂ sin(ωt) (8)

This potential drives the currents between strands.
Instead of calculating interstrand currents for particular

strands, we approximate the network of discrete resistances be-
tween strands as a continuous medium described by a resistivity
ρss in the plane perpendicular to the axis. Thus, we can calculate
current and loss from the electric field which is found from the
gradient of potential. The resulting time-average bundle-level
proximity-effect loss is calculated in Appendix II to be

Peddy, bundle=
p2ω2B̂2nd2

s`

32ρssπKa
(1 +

nπ2d2
s

4Kap2
). (9)

Again, for typical transformer designs,̂B2 is given by (7), based
on standard one-dimensional analysis [7].

We have now calculated all of the important losses in stranded
wire. We see that interstrand resistivity,ρss, and pitch, p
are important parameters determining the amount of bundle-
level proximity effect loss. Thus, we will address these two
parameters in more detail in Sections III and IV.

III. I NTERSTRANDRESISTIVITY MEASUREMENTS

The resistivity of the bundle in the plane perpendicular to
the axis, ρss, is an important parameter in determining the
bundle-level proximity-effect loss. If the resistance between
strands is known, it is possible to calculateρss. Because we
were unable to calculate all of the factors affecting resistance
between strands, we used the apparatus shown in Fig. 5 to
directly measure resistivity of a large number of strands packed
into a rectangular region. When strands are bundled, the contact
area increases with the increasing pressure packing the strands,
and so the interstrand resistivity decreases with pressure. To
enable quantifying this effect, the apparatus shown in Fig. 5
allows varying pressure through the force applied to a plunger.
In order to measure only the resistance of contacts between
strands, without measuring the contact resistance between the
apparatus and the strands, interdigitated electrodes on top and
bottom were used with a four-wire measurement technique.

We find that when strands are packed tightly (i.e., with high
pressure, around 80 kPa) the interstrand resistivity ceases to
change much with pressure. Thus, the resistivity at high pressure
can be used for design without the need to determine the actual
pressure in a given winding design.

Table I shows the experimental results at 80 kPa. There is no
consistent pattern to the data; the results may be related more
to the degree of oxidation or other contamination on the surface
of the wire than to the diameter. Given the inconsistency of the
data, it seems wise to design based on the worst-case lowest
value of 20µΩ·m. However, even 20µΩ·m is over one thousand
times higher than the resistivity of bulk copper. Thus, substantial
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TABLE I

INTERSTRAND RESISTIVITY UNDER80 KPA PRESSURE

Wire size (AWG) 32 38 44
Bare copper wire 240µΩ·m 75 µΩ·m 90 µΩ·m

Tinned copper wire 50µΩ·m 20 µΩ·m 110µΩ·m

decreases in loss can be expected even with no special efforts
to increase resistivity. It is also possible to estimate interstrand
resistivity from several different types of ac-loss measurements,
as discussed in Section V.

IV. OPTIMAL PITCH

From (9), we see that the bundle-level eddy-current loss
decreases as pitch is reduced. This is a direct result of the
reduced size of the loop in Fig. 4. However, the other losses,
Pr = I2

rmsRdc (whereRdc is given by (4) ) and the strand-level
eddy-current lossPeddy, strandgiven by (6), increase as pitch is
reduced. Thus, the total loss,Ptot = Pr+Peddy,strand+Peddy, bundle,
can be expected to have a minimum value at an intermediate,
optimal pitch, popt. This value can be found by setting the
derivative ofPtot with respect to pitch equal to zero and solving
for pitch.

popt = 4

√
π4ρssnd4

s

16ρc
+

32I2
rmsρssπ2ρc

ω2B̂2nd2
s

(10)

Because of bundle-level eddy-current loss, the optimal pitch
is typically smaller than that found in standard commercial wire.
However, there is no technical barrier to manufacturing wire
with smaller pitches, now that there is an incentive to do so.

With an expression for the optimal pitch in-hand, the remain-
ing choices are the number and diameter of strands. This design
problem is then similar to the design problem for standard litz
wire.

V. EXPERIMENTAL VERIFICATION OF LOSSPREDICTION

To verify the eddy-current loss predicted by (6) and (9),
we constructed a 40-turn to 40-turn transformer on an ETD39

F

50 mm

V

12.5 mm

50 mm

12.5 mm

Fig. 5. Experimental apparatus for measuring the interstrand resistivity.
Adjustable force can be applied such that the effect of pressure on the
interstrand resistivity can be taken into account. The right side shows the
interdigitated electrodes. These electrodes were placed on the top and bottom
of the rectangular region where wires were packed. With these electrodes,
contact resistance between electrodes and strands will not be included in the
measurement.

size ferrite core. Both windings used wire with 66 uninsulated
strands of 40 AWG (80µm diameter) tinned copper, twisted
with a pitch p = 8 mm. The overall bundle is insulated with
a thermoplastic coating. To reduce capacitance and dielectric
losses, and to facilitate high-frequency measurements, thick
polypropylene tape was used between winding layers. Mea-
surements were performed with the two windings connected
in series opposition, to ensure perfectly balanced leakage ex-
citation [8]. With the polypropylene tape, the self-resonant
frequency in this configuration was 15.8 MHz, well above the
frequency range of 1 kHz to 500 kHz that we measured.

Fig. 6 shows the measured ac resistance factor, along with
two theoretical curves based on our model with different values
of interstrand resistivityρss: the worst-case value of 20µΩ·m
and the value that gives the best fit to the measured data in
the low-frequency region, 25µΩ·m. We chose a value to fit the
measurements in the low-frequency region because the deviation
in the high-frequency region is likely due to self-shielding of
the bundle. We will discuss the self-shielding effect in more
detail in section V-A.

Also in Fig. 6 is the measured ac resistance factor of a single-
strand 22 AWG (0.64 mm diameter) winding. The diameter of
the single strand is slightly smaller than the overall stranded
bundle (0.7 mm diameter), but it still has about 10% lower dc
resistance. Considering dc resistance and ac resistance factor,
the net ac resistance of the two designs is equal at 15 kHz; above
this frequency the performance of the stranded-wire winding is
superior, typically by a large margin. Note that this is without
using the optimal pitch, as calculated in Section IV. At 100 kHz,
for example, the optimal pitch would be 4.6 mm instead of the
actual 8 mm, and would decrease the overall loss by 8%; at
300 kHz, the optimal pitch is 2.9 mm, and is calculated to
reduce the overall loss by 43%.
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Fig. 6. Experimental ac resistance factorFr = Rac/Rdc for a transformer
wound with stranded wire with 66 uninsulated 40 AWG strands, or with 22
AWG solid wire. Compared with a solid-wire winding, a stranded-wire winding
provides a great loss reduction. Our model predicts the loss in stranded wire
with high accuracy up to 100 kHz and reduced accuracy up to 500 kHz.
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Fig. 7. Experimental apparatus used to measure proximity effect eddy-
current loss in stranded wire. Two windings are used, as in a standard core-
loss measurement, such that the measurement (performed with an impedance
analyzer) does not include loss in these windings. However, the measurement
does include eddy-current loss induced in a wire sample placed in the gap.
The windings have a total of ten turns each, five on each core-half (Ferroxcube
U93/76/30 size of 3C85 ferrite).

A. Self-shielding effect

The bundle-level self-shielding effect occurs when the mag-
netic field generated by the bundle-level eddy current is large
enough to reduce the original magnetic field which induces the
eddy current. Thus the magnetic field in the center of the bundle
is reduced. As defined and calculated in Appendix III, the onset
frequency of the self-shielding effect is

fonset =
4πρss

µ0p2
(11)

To look at the self-shielding effect in more detail, we set
up a measurement apparatus as shown in Fig. 7 to directly
measure proximity-effect loss. With this apparatus we use four
terminal impedance measurement to detect losses in this gapped
transformer. When there is no wire in the gap, it detects the
core loss; when we put wire in the air gap, eddy current loss is
induced in the wire and this loss will simply add to the measured
loss. To determine the loss in the wire, we subtract the core loss
from the total loss.

Suppose there is a sinusoidal current with rms amplitudeI
flowing in the primary winding. With the secondary winding
open, the flux density in the air gap is

B̂ =
µ0N

√
2I

2`g
(12)

where`g is the length of air gap. Thus the power loss in the
wire will be

Pwire = (1 +
π2nd2

s

4Kap2
)(

πω2B̂2d4
sn`

128ρc
+

p2ω2B̂2nd2
s`

32ρssπKa
) (13)

Substituting (12) into (13) and dividing both sides of (13) by
I2 yields

Rpe = (1 +
π2nd2

s

4Kap2
)(

πω2d4
sn`

128ρc
+

p2ω2nd2
s`

32ρssπKa
)(

µ2
0N

2

2`2g
). (14)

where Rpe is the measured increase in the real part of
impedance when the wire is inserted into the gap. Thus in the
measurement, we do not need to know the current flowing in
the primary winding.
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Fig. 8. Measurement of proximity-effect loss in wire with 65 strands of AWG
30 tinned copper wire, using the apparatus in Fig. 7. The vertical axis (Rpe) is
the measured increase in the real part of impedance when the wire is inserted
into the gap. The decreased slope of the measured loss at high frequencies is
believed to be due to the self-shielding effect of bundle-level eddy currents.
The calculated onset frequency of this effect is 237 kHz. To estimate the
experimental onset frequency, the dotted line with slope 0.5 is drawn tangent to
the measured data. It crosses the low-frequency assymptote at about 130 kHz,
indicating a lower onset frequency than calculated, but it is difficult to determine
this accurately because the accuracy of the measurement is degraded at high
frequencies by a resonanace in the apparatus around 800 kHz. Parameters for
the stranded wire tested arep = 32.5 mm, ρss = 25 µΩ·m, ` = 100 mm.

Two wire samples were measured and the data are shown in
Fig. 8 and Fig. 9.

In both figures, the predicted resistance is plotted along with
bundle-level and strand-level resistances. For each wire sample,
a interstrand resistivity,ρss, is chosen to fit the measured data.
Using (11), we calculate the onset frequencies of the self-
shielding effect to be 237 kHz and 625 kHz for the two samples.

We wish to compare the experimental result with this cal-
culation. However, it is difficult to clearly identify the onset
frequency in the experimental data. We expect that, as in solid
wire, the ac resistance will be proportional to the square root of
frequency in the high-frequency region well above the onset of
self-shielding. In Figs. 8 and 9 this high-frequency asymptote
is represented by a dotted line with a slope of 0.5, chosen to
be tangent to the measured curve. The intersection with the
low-frequency predicted resistance line then defines the mea-
sured onset frequency. Unfortunately, the resonant frequency
of the apparatus occurs near the onset frequency, at about
800 kHz. Thus, the data does not include a large enough portion
with slope of 0.5 to allow an accurate determination of this
asymptote, and our experimental measurments are only rough
estimates of the onset frequency. This difficulty is particularly
severe in Fig. 9 which has the higher onset frequency.

Despite these limitations, the experiment is a useful confir-
mation of the trends in onset frequency, and it confirms the
predicted order of magnitude of the frequency at which the
self-shielding effect becomes significant: For the wire with 65
strands, the measured onset frequency (as we have defined it
graphically) is about 130 kHz, while for the wire with 41
strands, it is about 300 kHz. Both measurements are about a
factor of two below the calculated onset frequencies.
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Fig. 9. Measurement of proximity-effect loss in wire, similar to Fig. 8, but
with 41 strands of AWG 30 tinned copper wire. Again, the decreased slope
of the measured loss at high frequencies is believed to be due to the self-
shielding effect of bundle-level eddy currents. The calculated onset frequency
of this effect is 625 kHz, and the estimated experimental onset frequency is
about 300 kHz. However, it is very difficult to determine this point accurately
because of its proximity to the 800 kHz resonance of the apparatus. Parameters
for the stranded wire tested arep = 20 mm, ρss = 25 µΩ·m, ` = 100 mm.

VI. CONCLUSION

Stranded wire can be a useful low-cost alternative to high-
cost litz wire. Both the cost of insulating individual strands, and
the cost of terminating the litz wire can be avoided or decreased.

In order to make the use of stranded wire a viable alternative,
it is necessary to be able to predict high-frequency losses in
it. These losses include the same strand-level eddy-current and
resistive losses as in litz wire, plus bundle-level eddy-current
effects arising from the finite interstrand resistivity. We have
presented an analysis of this loss, plus improvements to models
of strand-level eddy-current and resistive losses to precisely
account for the effect of pitch.

Important parameters in determining the performance of
stranded wire are the resistance between strands and the pitch.
Interstrand resistivity has been characterized, and a worst-case
value proposed for use in design. An optimal pitch has been
found for minimum total loss.

Experimental measurements verify the model and show dra-
matic advantages over the performance of a solid-wire winding
without the high cost of litz wire. Discrepancies between
prediction and measurement at very high frequency due to the
bundle self-shielding effect have been discussed. Above the
self-shielding onset frequency where the loss calculation is not
accurate, it over estimates actual losses such that designs based
on our model will be conservative. With the models and data we
provide, designers can now take advantage of this opportunity
for large savings in cost and loss.

APPENDIX I
CALCULATION OF DC RESISTANCE

The diameter of the bundle will increase with twisting. As
defined in (2),Ka is the packing factor and is assumed to be

constant independent of pitch. Now we consider the situation
when a bundle ofn strands is twisted. In the bundle cross
section, each strand area is elliptical, at an angle,θ, to the strand,
shown in Fig. 3. Note that at different radii,θ has different
values. From the elliptical area, we can calculate cross sectional
area perpendicular to the strand.

As,c = As,e cos(θ) (15)

whereAs,c is the cross sectional area of the strand perpendicular
to the strand andAs,e is the cross sectional area of the strand
perpendicular to the bundle. AsKa is independent of pitch,

Ka =
nAs,c

Ab,0
(16)

whereAb,0 is the overall bundle area when there is no twisting.
The total cross sectional area of copper perpendicular to each
strand is

Ac = nAs,c = KaAb,0 = Ka
πd2

0

4
(17)

whered0 is the bundle diameter without twisting. In a twisted
bundle,Ac can be calculated as

Ac =
n∑

i=1

As,e,i cos(θi) (18)

And this can be approximated as

Ac =
∫ db

2

0

Ka cos(θ)2πrdr (19)

Combining (17) and (19), we get the bundle diameter with
twisting.

db = d0

√
(1 +

π2nd2
s

4Kap2
) (20)

Substituting ind0

d0 =

√
nd2

s

Ka
(21)

results in the equation for bundle diameter (3).
The DC power loss of a single strand is

Pdc,s = I2
s ρc

`d
1
4πd2

s

(22)

whereIs is the rms current in each strand. In the cross section
of a twisted bundle, DC power loss per unit area is

Pdc,unit =
Pdc,s

As,e

Ka

=
16KaI2

s ρc`

π2d4
s

(23)

We integrate over the bundle to get the total DC power loss

Pdc =
∫ db

2

0

Pdc,unit2πrdr = Pdc,0(1 +
π2nd2

s

4Kap2
) (24)

wherePdc,0 is DC loss of the bundle without twisting. Now it
is easy to calculate the DC resistance of the twisted bundle

Rdc =
4ρc`

πnd2
s

(1 +
π2nd2

s

4Kap2
) (25)

where 4ρc`
πnd2

s
represents resistance without twisting.
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APPENDIX II
CALCULATION OF BUNDLE-LEVEL EDDY-CURRENTLOSS

Fig. 10 shows the integration loop (marked with arrows) used
to find voltage that induces current flow between strands, as in
Fig. 4, but with coordinates. The area of the loop in Fig. 10
varies with distancea between the positions where potential is
evaluated.

z

B
x

a

(x,z)

Fig. 10. Integration loop used to find voltage that induces current flow along
the marked path.

The coordinates of the marked point on the loop (x,z) can
be expressed as

x = r cos(φ) z =
p

2π
φ (26)

Then the area of the loop projected on the xz plane is

Aloop = 4
∫ a

2

0

xdz =
2rp

π
sin(

πa

p
) (27)

Thus, if we describe the bundle cross section in polar coordi-
nates (r, φ), the potential difference between a strand and the
strand in the corresponding position on the opposite side of the
bundle depends onφ ( which determinesa), and on the radius
r. The time varying flux density is

B = B̂ cos(ωt) (28)

According to Faraday’s Law, the potential can be found from
the derivative of flux with respect to time. Taking the center of
the bundle as zero potential, the potential at the point (r, φ) is

V (r, φ) = −d( 1
4BA)
dt

=
rp

2π
sin(φ)ωB̂ sin(ωt) (29)

The electric field can be found from the gradient of potential.

E(r, φ) = −∇V = − p

2π
ωB̂ sin(ωt)[

∧
r sin φ +

∧
φ cosφ] (30)

Instead of calculating interstrand currents for particular strands,
we approximate the network of discrete resistances between
strands as a continuous medium described by a resistivityρss

in the plane perpendicular to the axis. Thus we calculate the
loss from the electric field

P (t) =
∫

υ

E2

ρss
dυ =

p2ω2B̂2nd2
s`

16ρssπKa
(1 +

nπ2d2
s

4Kap2
) sin2 ωt (31)

Taking the time-average of (31) and using (7), results in an
expression for bundle-level proximity-effect loss (9).

APPENDIX III
CALCULATION OF SELF-SHIELDING EFFECTONSET

FREQUENCY

The self-shielding effect occurs when the magnetic field
generated by the eddy current is large enough to reduce the
original magnetic field which induces the eddy current. The
full calculation of the field as a combination of applied field
and eddy field is complicated. To make the calculation simpler,
we assume that the eddy current is only due to the applied
field and is not affected by eddy current. Thus we define the
onset frequency as the frequency at which the field due to eddy
current in the center of the bundle matches the applied field.

Having the electric field in a given bundle cross section (30),
we can calculate the volume current density.

Jv(r, φ) =
E(r, φ)

ρss
(32)

And the surface current density at a specific angle is

Js(φ) =
Jvrb cos(φ)

sin(θ)
(33)

Only the axial component of the surface current will contribute
to eddy field to reduce the applied field.

Js,z(φ) = Js(φ) cos(θ) (34)

Now we can integrate over the circle to get the flux density due
to eddy current in the center of the bundle.

Bcenter =
∫ 2π

0

µ0Js,z(φ)
2π

cos(φ)dφ =
µ0pωrb cot(θ)

4πρss
B̂ sin(ωt)

(35)
Setting the magnitude of this flux density equal to the magnitude
of applied flux density, we get the onset frequency of the self-
shielding effect.

fonset =
4πρss

µ0p2
(36)
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