

DURA-BILT SI MU

** ****

YEAR WARRANTY

Medium Voltage AC Drive Topology

Comparisons & Feature-Benefits

YEAR WARRANTY

Typical AC Inverter System

AC Drive Topology:

A map-like diagram showing the elements of an AC drive and the relationships between them.

Two Basic AC Drive Topologies

- Current source drive: ENERGY STORAGE section between converter and inverter consists of an inductor.
- Voltage Source Drive: ENERGY STORAGE section between converter and inverter consists of capacitors.

OWNA-BILT SI MU

** ****

YEAR WARRANTY

Evolution of Power Devices Leads the pace of AC drive development

Advances in Power Semiconductor Technology Lead the Way in MV Drive Development

- The Common Threads:
 - ✓ All AC Drives rectify AC to DC
 - ✓ All AC Drives use switches to create AC from DC
- Drive topologies were created as power rectifiers and switches grew in ratings and capabilities.
- Each new or uprated device opens up new applications
- A quick look at the device development timeline is useful

Development Time Line of Power Semiconductors

Transistor Devices Bipolar Power Injection Enhanced Low Voltage Insulated Medium Voltage Insulated Transistor Gate Bipolar Transistor Gate Bipolar Transistor Gate Transistor (BPT) (LV IGBT) (MV IGBT) (IEGT) 2005 1955 1965 1975 1985 1995 Silicon Gate Turn Off Integrated Gate Symmetrical Gate Diode (D) Controlled Thyristor **Commutated Thyristor** Commutated Thyristor Rectifier (SCR) (GTO) (IGCT) (SGCT) **Thyristor Devices**

Diode and Thyristor Families of Devices

Device	Operation	Description			
Silic	Silicon Diode Family of Devices				
Diode		Conducts positive current			
Th	yristor Family o	f Devices			
Silicon Controlled Rectifier (SCR)		Gate current triggers the flow of positive current. After loss of gate signal, turns off the positive current at next zero cross over.			
Gate Turn Off Thyristor (GTO)		Small positive gate signal turns on positive current, a large reverse gate turns off the positive current.			
Integrated Gate Commutated Thyristor (IGCT)		A GTO with electronics for gate control integrated onto a printed circuit w rapped around the device. Blocks voltage in one direction.			
Symmetrical Gate Commutated Thyristor (SGCT)		A GTO thyristor similar to the IGCT except that it blocks voltage in both directions.			

	Device	Operation	Description	
	Transistor Family of Devices			
Transistor Eamily	Bipolar Power Transistor (BPT)		Controls the flow of positive current with current injected into its base.	
Family of Devices	Insulated Gate Bipolar Transistor (IGBT)		A hybrid device with very a high input resistance gate transistor providing current to turn it on.	
	Injection Enhanced Gate Transistor (IEGT)		A high-power advanced form of the IGBT with a very low on- state voltage and even lower losses than the thyristor.	

IGBT

Drive Power Device Application Comparison

IGBT

Binolar

Power Device Comparison

Detailed Overview

Device		Silicon	[SCR]	GIO	Transistor	LV	MV	IGCI	SGCI	IEGI
↓Comp	arison Area	Diode Rectifier	Silicon Controlled Rectifier	Gate Turn Off Thyristor	Power Darlington Type	Insulated Gate Bipolar Transistor	Insulated Gate Bipolar Transistor	Integrated Gate Controlled Thyristor	Symmetrical Gate Controlled Thyristor	Injection Enhanced Gate Transistor
Inverter \$	Switch			х	x	×	x	x	x	x
AC - DC Cor	nversion	x	x	x		x	x	x	x	x
Inverter (Circuit	x								
Inverter	Current Source		x	х					x	
types	Voltage Source	x		х	х	x	x	x		x
Efficie	ncy	High	High	Low	Low	High	High	Medium- High	Medium- High	High
Gate Contro	ol Signal	NA	Curent	Current	Current	Voltage	Voltage	Current	Current	Voltage
Gate Cu	rrent	NA	< 2 amps	400-1000 amps	up to 10 amps	0.1 amps	< 1 amp	4000 amps	4000 Amps	< 1.5 A
Gate co componen	ntrol t Count	NA	Medium	High	Low	Low	Low	High	High	Low
Voltage F	Rating	High	High	High	Low	to 1200 v	to 4500 volts	to 6000 volts	to 6000 volts	to 4500 volts
Current F	Rating	6000 amps	5500 amps	1000 amps	500 amps	1000 amps	to 1200 amps	4000 amps	5000 amps	to 4000 amps
Switch Loss	ing es	NA	Medium	High	Medium	Low	Low	Medium	Medium	low
Snubber	Parts	NA	Few	Many	NA	Low	None	None	None	Low
Switching	Speed	NA	Low	Low	Low	Very High	High	Medium	Medium	High
Life Cycle	Point	Mature but current	Mature but current	Phasing out	Rarely used	Current & Growing	Current & Growing	Current	Current	Current & Growing
Mount	ing	Press-Pack & Single Side	Press- Pack	Press- Pack	Single side	Single side	Single side	Press-Pack	Press-Pack	Press-Pack & Single Side

Thvristor

Comparison Areas

Comparison Areas for Drive Power Devices

Gate power to turn device on & off External circuitry [firing & protection]

Switching speed, switching losses On-state forward drop and losses

Continuous current ratings Forward & reverse blocking voltage

Physical mounting & thermal characteristics

<u>Impact</u>

Number of control devices & system reliability

> System efficiency & cooling

Number of power devices, & system reliability

Packaging & system Size

Comparing Gate Power of Devices - 1

GE GTO-IMD Example

- Liquid-cooled configuration
- Many discrete parts in firing and auxiliary parts
- Snubber network also shown
- Physically quite large

GCT Gate Driver Equipment Covers on

GCT & Gate Driver Board Covers off

4.5kV-4kA

36 Electrolytic caps 21 FET Switches

Typical IGBT & IGBT Gate Driver Circuit

IGBT 400 amp 3300 volt dual package Larger ratings have 1/package

Approximate Size: 4 inches x 4.5 inches Typical MV IGBT Dual Gate Driver

Each board has 2 drivers, & fires 2 IGBT's

IEGT – Latest Generation Voltage Switched Power Device

- IEGT = Injection Enhanced Gate Transistor
- Ratings to 4000 volts, 4500 amps
- Press pack or single sided
- Lower forward drop than IGBT, meaning higher power density, more efficiency.

IEGT Gate Driver Equipment

Calculated Reliability of Gate Drivers

Power Device Losses

Generally

Volts across device X Current Through Device = Power Lost in Device

Two Categories of Device Loss:

- 1. Losses During Turn-on & Turn-off
 - Minimized by faster switching
 - Equals area under volt-amp product curve

2. Losses during conduction

- Minimized by reducing device forward drop
- Equals device forward volts x amps

Power Device Losses

YEAR WARRANT

Power Device Switching Losses Current Switched [IGCT]

vs Voltage Switched MV IGBT

DEVICE	IGCT	IGBT
Device rating	750 AMP	800 AMP
Turn On Joules Lost / pulse	2.15	1.92
Turn-Off Joules Lost / pulse	12	1.02
Total Switching Energy Joules Lost / Pulse	14.15	2.94

Almost 5:1 higher switching losses IGCT vs MV IGBT!

IGCT Rated Amps = 750 SOURCE: Mitsubishi FGC1500-130DS

IGBT Rated Amps =800 SOURCE: EUPEC FZ 800 R33 KF2

Power Device On-State Losses IGCT vs MV IGBT Examples

Comparing Large Inverter Efficiencies:

IEGT vs IGCT / SGCT vs GTO

Note: IGBT drive efficiencies typically equivalent to IEGT

Power Switch Voltage and Current Ratings

Continuous current ratings Forward & reverse blocking voltage Number of power devices, & system reliability

- Higher device voltage ratings mean fewer devices are needed to match load voltage rating
- Higher *current* ratings mean fewer devices can be used without
 requiring paralleling
- Tradeoff: Using fewer, higher voltage-rated devices gives output waveform fewer levels with larger voltage change.
 For >4 kv drives, this requires large output filters.

5 level 4000 volt Output No sine filter needed

3 level 4000 volt Output Large sine filter needed

• As of March 2003: GCT: 4500 A, 6kV IGBT: 1200 A, 4500 V IEGT: 4000 A, 4500 V

Power Switching Devices Final Comparisons & Conclusions

- <u>Current switched</u> devices [SGCT, IGCT] require many more parts in firing / gate control than voltage switched devices [IGBT, IEGT].
- <u>Voltage switched</u> devices [IGBT, IEGT] have MUCH lower switching losses than current switched.
- Conduction losses are nearly equal for equivalent volt & amp-rated device SGCT, IGCT vs IGBT, IEGT
- Voltage switched devices allow higher switching rates and can give better output waveforms

DURA-BILT SI MU

:: ::::

YEAR WARRANTY

Comparisons of Major Drive Type Topologies

Comparing Topologies

- Current Source Drives
 ✓LCI Load Commutated Inverter
 ✓GTO/SGCT Current Source Induction Motor Drive
- Voltage Source Drives
 ✓LV IGBT "Paice" Multilevel PWM
 ✓MV IGCT PWM Diode or Active Source
 ✓MV IGBT PWM Integrated package
 ✓MV IEGT PWM Active or Diode Source

V VEAR WARRANTY

Siemens

LCI – Current Source Load Commutated Inverter

Example: GE-Innovation Series® LCI

Inverter Topology	Advantages	Drawbacks	Practical Power Range
Current source Load-Commutated Inverter SCR = Silicon Controlled Rectifier, Thyristor	 Low Parts Count Full Regen is inherent Rugged – ultra reliable Economical High HP N+1 SCR device redundancy possible 	 Requires a controlled front end High motor current THD Slow transient response Narrow motor frequency range Reduced Starting Torque Limited starting performance Poor PF at low motor speeds High harmonics unless multiple channels used; filters 	Above 6 MW Synchronous Motors Only
		may be needed.	Primarily being offered by:
		G	E Toshiba, ABB,

Alternate LCI Configurations

6-Pulse input 6-Pulse output

12-Pulse input 12-Pulse output

12-Pulse input 6-Pulse output

Current Source GTO / SGCT Induction Motor Drive

Example: GE-GTO IMD Induction Motor Drive

Inverter Topology	Advantages	Drawbacks	Practical Power Range
Current Source GTO or SGCT PWM Inverter GTO = Gate Turn Off Thyristor SGCT = Symmetrical Gate-Controlled	 Low power device (GTO/SGCT) parts count Low motor THD Low motor insulation stress when input isolation transformer 	 Requires a controlled front end – extra complexity Poor input power factor, with SCR front end Slow transient response Narrow speed range Potential resonance between motor & caps Limited availability of power devices Complex firing circuit 	2 - 15 MW Primarily induction motor load
Thynstor			Primarily being offered by: Allon Bradlov

Proprietary to GE TOSHIBA Automation Systems

Current Source SGCT Induction Motor Drive With "Isolation" Reactor in Place of Transformer

Energy stored in Link Inductor

DUBA-BILT 51 MV

Voltage Source General Drive Arrangements

Diode Rectifier Converter Fed

PWM: Pulse Width Modulation

A method of varying voltage by changing the average "ON" time of switches between source and load.

Example Pulse-Width-Modulated [PWM] Waveform

Voltage: The Average of the time the Voltage is on Plus the time the Voltage is Off.

Current: The Motor tends to smooth the resulting current

EXAMPLE SIMULATED SINE WAVE PRODUCED BY 2-LEVEL PWM INVERTER

Example Two-Level Voltage Source Inverter

Motor Amps

LV IGBT Multi-level Voltage Source PWM Inverter

Example: GE Innovation Series® Type H

Typical Power Cell

Energy stored in <u>electrolytic</u> caps

Inverter Topology	Major Advantages	Major Limitations	Practical Power Range
Multi-level Voltage Source LV IGBT PWM Inverter LV IGBT = Low-voltage Insulated Gate Bipolar Transistor	 Power Cell N+1 redundancy available Low motor current THD Fast transient response Wide motor frequency range No significant torque pulsations High starting torque. 	 No regen or DB possible Large parts count – lowers base MTBF N+1 redundancy adds parts and decreases MTBF Large footprint in high HP Electrolytic capacitors 	0.5 - 7 MW Sync or Induction motor
	 Multi-pulse converter for very low AC line harmonics High true pf over all speeds 	sensitive to overvoltage	Primarily being offered by:
4-08-03	Proprietary to GE TOSHIB	A Automation Systems	Robicon, Toshiba Japan

Power Cell "N+1" Redundancy

- "N+1 redundancy" originated in LCI drive design, defined as having an extra SWITCHING DEVICE per leg, with no other added parts.
- One Robicon method re-defines "N+1" as including a complete extra cell transformer secondary & SCR bypass switch:
 - Cell must be intact and control 100% functional to work
 - Added parts work all the time and decrease drive component MTBF
- Traditionally, increased reliability comes from reducing parts count and conservative design.

IGCT PWM Voltage Source Inverter

Example: GE-Innovation Series® SP IGCT Mill Drive

Energy stored in liquid filled caps

Inverter Topology	Major Advantages	Major Limitations	Practical Power Range
IGCT PWM Voltage Source Inverter Three Level	 Low power switch device count for voltage rating Fast transient response & wide motor frequency range High starting torque High power levels with largest IGCT devices Regen possible with active IGCT 	 Complex high parts count firing circuit 3-level output requires output sine filter. Above 4 kV output requires output filter for low motor current distortion. Potential for electrical and mechanical resonance between load and filter. 	0.5 – 4.8 MVA per inverter, air cooled 4.8 – 9.6 MVA, dual channel
	converter		Primarily being offered by:

IGCT PWM Voltage Source Inverter

Details & Alternate Configurations

MV IGBT NPC Voltage Source Drive

Example: GE-Toshiba Dura-Bilt5i® MV

Inverter Topology	Major Advantages	Major Limitations	Practical Power Range
Three / Five Level Voltage Source MV IGBT PWM Inverter MV IGBT = Medium- Voltage Insulated Gate Bipolar Transistor	 Minimum parts count for voltage rating & waveform Simple firing circuit. High efficiency Low motor current THD Fast transient response Wide motor frequency range No significant torque pulsations High starting torque. Multi pulse converter for very low AC line harmonics High true pf over all speeds 	 No regeneration available Fast rise time IGBT switching may require dv/dt output filter in some cases Power Device redundancy not practical 	 0.5 – 4.8 MVA per inverter, air cooled 4.8 – 9.6 MVA, dual channel Sync or Induction Motors Primarily being offered by:
0 02		A Automotion Culture	GE-Toshiba. Siemens

MV IGBT NPC Voltage Source Drive Details

GE TOSHIBA AUTOMATION SYSTEMS

IEGT PWM Voltage Source Inverter

DURA-BILT 51 MV

Example: GE-Toshiba 8 MW T650 IEGT drive with active IEGT Source

Energy stored in liquid filled caps

Inverter Topology	Major Advantages	Major Limitations	Practical Power Range
Three Level Voltage Source IEGT PWM Inverter IEGT = Injection Enhanced Gate Transistor	 Minimum power device count – 24 for complete 8 mw regen system Simple firing circuit [4:1 more reliable than IGCT] and very high system MTBF. Low motor current THD Fast transient response & wide motor frequency range High starting torque with no significant forque pulsations 	 IEGT device limits allow 3300 volt motor output [European and Asian Standard] 3300 volts is not as common as 4160 volts in North American applications. 	6 to 26 MW, water cooled, one or two channel At 3300 volts Sync or Induction Motor
	 Active front end for low harmonics, regeneration, unity or leading PF 		Primarily being offered by:
			GF-Toshiba

IEGT PWM Voltage Source Inverter & Active Converter Circuit Details & Alternate Diode Converter Configuration

Global Office Locations:

GE Toshiba Automation Systems, USA

1501 Roanoke Blvd. Salem VA, 24153 USA TEL: +1-540-387-5741; FAX: +1-540-387-7060 www.getoshiba.com

Toshiba GE Automation Systems

Mita 43 Mori Bldg. 13-16 Mita 3 chome, Minato-ku Tokyo 108-0073 Japan TEL: +81-3-5444-3828; FAX: +81-3-5444-3820 www.toshiba-ge.co.jp

Innovation Series, Dura-Bilt5, and Dura-Bilt5i are registered trademarks of the General Electric Company